Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Huan Jing Ke Xue ; 44(1): 583-592, 2023 Jan 08.
Article in Chinese | MEDLINE | ID: covidwho-2246715

ABSTRACT

Quaternary ammonium compounds (QACs) are one type of widely used cationic biocide, and their usage amount is growing rapidly due to the flu and COVID-19 pandemic. Many QACs were released into the environment in or after the course of their use, and thus they were widely detected in water, sediment, soil, and other environmental media. QACs have stronger surface activity and non-specific biotoxicity, which poses a potential threat to the ecosystem. In this study, the environmental fate and potential toxicity of QACs were documented in terms of their migration and transformation process, biological toxicity effects, and the main mechanisms of bacterial resistance to QACs. Aerobic biodegradation was the main natural way of eliminating QACs in the environment, and the reaction was mainly initiated by the hydroxylation of C atoms at different positions of QACs and finally mineralized to CO2and H2O through decarboxylation, demethylation, and ß-oxidation reaction. Toxicological studies showed that QACs at environmental concentrations could not pose acute toxicity to the selected biotas but threatened the growth and reproduction of aquatic organisms like Daphnia magna. Their toxicity effects depended on their molecular structure, the tested species, and the exposed durations. Additionally, our team first investigated the toxicity effects and mechanisms of QACs toward Microcystis aeruginosa, which showed that QACs depressed the algae growth through the denaturation of photosynthetic organelles, suppression of electron transport, and then induction of cell membrane damage. In the environment, the concentrations of QACs were always lower than their bactericidal concentrations, and their degradation could induce the formation of a concentration gradient, which facilitated microbes resistant to QACs. The known resistance mechanisms of bacteria to QACs mainly included the change in cell membrane structure and composition, formation of biofilm, overexpression of the efflux pump gene, and acquisition of resistance genes. Due to the similar targets and mechanisms, QACs could also induce the occurrence of antibiotic resistance, mainly through co-resistance and cross-resistance. Based on the existing data, future research should emphasize the toxicity effect and the potential QACs resistance mechanism of microorganisms in real environmental conditions.


Subject(s)
Ammonium Compounds , COVID-19 , Humans , Ecosystem , Pandemics , Quaternary Ammonium Compounds/toxicity , Quaternary Ammonium Compounds/chemistry , Anti-Bacterial Agents/pharmacology
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.05.463282

ABSTRACT

Robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) accounts for high viral transmissibility, yet whether neutralizing IgA antibodies can control it remains unknown. Here, we evaluated receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1 and B8-dIgA2 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparably potent neutralization against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viruses in lungs, pre-exposure intranasal B8-dIgA1 or B8-dIgA2 led to 81-fold more infectious viruses and severer damage in NT than placebo. Virus-bound B8-dIgA1 and B8-dIgA2 could engage CD209 as an alternative receptor for entry into ACE2-negative cells and allowed viral cell-to-cell transmission. Cryo-EM revealed B8 as a class II neutralizing antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Therefore, RBD-specific neutralizing dIgA engages an unexpected action for enhanced SARS-CoV-2 nasal infection and injury in Syrian hamsters.


Subject(s)
Severe Acute Respiratory Syndrome
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-923755.v1

ABSTRACT

Robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) accounts for high viral transmissibility, yet whether neutralizing IgA antibodies can control it remains unknown. Here, we evaluated receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1 and B8-dIgA2 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparably potent neutralization against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viruses in lungs, pre-exposure intranasal B8-dIgA1 or B8-dIgA2 led to 81-fold more infectious viruses and severer damage in NT than placebo. Virus-bound B8-dIgA1 and B8-dIgA2 could engage CD209 as an alternative receptor for entry into ACE2-negative cells and allowed viral cell-to-cell transmission. Cryo-EM revealed B8 as a class II neutralizing antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Therefore, RBD-specific neutralizing dIgA engages an unexpected action for enhanced SARS-CoV-2 nasal infection and injury in Syrian hamsters.


Subject(s)
Severe Acute Respiratory Syndrome
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-354943.v1

ABSTRACT

Highly pathogenic coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2, Middle East respiratory syndrome coronavirus (MERS-CoV)3,4, and SARS-CoV-15 vary in their transmissibility and pathogenicity. However, infection by all three viruses result in substantial apoptosis in cell culture6-8 and in patient samples9-11, suggesting a potential link between apoptosis and the pathogenesis of coronaviruses. To date, the underlying mechanism of how apoptosis modulates coronavirus pathogenesis is unknown. Here we show that a cysteine-aspartic protease of the apoptosis cascade, caspase-6, serves as an essential host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid (N) proteins, generating N fragments that serve as interferon (IFN) antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates the lung pathology and body weight loss of SARS-CoV-2-infected golden Syrian hamsters and improves the survival of mouse-adapted MERS-CoV (MERS-CoVMA)-infected human DPP4 knock-in (hDPP4 KI) mice. Overall, our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate their replication. These results further suggest caspase-6 as a potential target of intervention for the treatment of highly pathogenic coronavirus infections including COVID-19 and MERS.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Weight Loss , COVID-19
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-67556.v1

ABSTRACT

SARS-CoV-2 is more infectious and transmissible in humans than SARS-CoV, despite the genetic relatedness and sharing the same cellular receptor. We sought to assess whether human airway organoids can model SARS-CoV-2 infection in the human airway and elucidate the cellular basis underlying its higher transmissibility. We demonstrate that SARS-CoV-2 can establish a productive infection in human airway organoids, in which ciliated cell and basal cell are infected. Wildtype SARS-CoV-2 carrying a furin cleavage motif exhibits comparable replication kinetics to a mutant virus without the motif. Human airway organoids sustain higher replication of SARS-CoV-2 than SARS-CoV, whereas interferon response is more potently induced in the latter than the former. Overall, human airway organoids can model SARS-CoV-2 infection and recapitulate the disposable role of furin cleavage motif for virus transmission in humans. SARS-CoV-2 stealth growth and evasion of interferon response may underlie pre-symptomatic virus shedding in COVID-19 patients, leading to its high infectiousness and transmissibility.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
6.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-18687.v1

ABSTRACT

The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The current COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we showed that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus-host membrane fusion, including the enveloped coronaviruses (SARS-CoV-2, SARS-CoV and MERS-CoV), the pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, and the non-enveloped rhinovirus. P9R could significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and showed low possibility to cause drug-resistance virus. Mechanistic studies indicated that the antiviral activity of P9R depended on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a new concept that virus-binding alkaline peptides could broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R could be a promising candidate for combating pH-dependent respiratory viruses.Authors Hanjun Zhao, Kelvin K. W. To, and Kong-Hung Sze contributed equally to this work.


Subject(s)
COVID-19 , Philadelphia Chromosome , Severe Acute Respiratory Syndrome , Attention Deficit and Disruptive Behavior Disorders
SELECTION OF CITATIONS
SEARCH DETAIL